Math 102

Krishanu Sankar

November 15, 2018

Goals Today - Euler's Method

- An example
- Definition in general
- Practice by hand
- Practice using a spreadsheet
- Conceptual discussion

Euler's Method

$$
y^{\prime}=y(4-y)
$$

Goal: Suppose that $y(0)=3$. We want to approximate $y(0.5)$.

Euler's Method

$$
y^{\prime}=y(4-y)
$$

Goal: Suppose that $y(0)=3$. We want to approximate $y(0.5)$.

Idea: The trajectory must follow the slope field.
The slope field gives little local linear approximations to the trajectory. So we can use it to give a step-by-step approximation.

$$
y^{\prime}=y(4-y) \quad y(0)=3
$$

Question: What is $y^{\prime}(0)$?

$$
y^{\prime}=y(4-y) \quad y(0)=3
$$

Question: What is $y^{\prime}(0)$?

$$
y^{\prime}(0)=3(4-3)=3
$$

Therefore,

$$
y(0.1) \approx y(0)+0.1 y^{\prime}(0)
$$

$$
y^{\prime}=y(4-y) \quad y(0)=3
$$

Question: What is $y^{\prime}(0)$?

$$
y^{\prime}(0)=3(4-3)=3
$$

Therefore,

$$
\begin{aligned}
y(0.1) & \approx y(0)+0.1 y^{\prime}(0) \\
& =3+3(0.1) \\
& =3.3
\end{aligned}
$$

$$
y^{\prime}=y(4-y) \quad y(0.1) \approx 3.3
$$

Question: What is $y^{\prime}(0.1)$?

$$
y^{\prime}=y(4-y) \quad y(0.1) \approx 3.3
$$

Question: What is $y^{\prime}(0.1)$?

$$
y^{\prime}(0.1)=3.3(4-3.3)=2.31
$$

Therefore,

$$
\begin{aligned}
y(0.2) & \approx y(0.1)+0.1 y^{\prime}(0.1) \\
& =3.3+2.31(0.1) \\
& =3.531
\end{aligned}
$$

$$
y^{\prime}=y(4-y) \quad y(0.2) \approx 3.531
$$

Question: What is $y^{\prime}(0.2)$?
$y^{\prime}(0.2)=3.531(4-3.531)$

$$
\approx 1.656
$$

Therefore,

$$
\begin{aligned}
y(0.3) & \approx y(0.2)+0.1 y^{\prime}(0.2) \\
& \approx 3.697
\end{aligned}
$$

$$
y^{\prime}=y(4-y) \quad y(0.3) \approx 3.697
$$

Question: What is $y^{\prime}(0.3)$?

$$
\begin{aligned}
y^{\prime}(0.3)= & 3.697(4-3.697) \\
& \approx 1.12
\end{aligned}
$$

Therefore,
$y(0.4) \approx y(0.3)+0.1 y^{\prime}(0.3)$ ≈ 3.809

$$
y^{\prime}=y(4-y) \quad y(0.3) \approx 3.809
$$

Question: What is $y^{\prime}(0.4)$?

$$
\begin{aligned}
& y^{\prime}(0.4)=3.809(4-3.809) \\
& \approx 0.728 \\
& \text { Therefore, } \\
& \begin{aligned}
y(0.5) & \approx y(0.4)+0.1 y^{\prime}(0.4) \oint_{(0.3)}^{0}(0.1,3.3) \\
& \approx 3.882
\end{aligned}
\end{aligned}
$$

$$
y^{\prime}=y(4-y) \quad y(0.5) \approx 3.882
$$

Actual value: $y(0.5)=3.8273 \ldots$

$$
y^{\prime}=y(4-y) \quad y(0.5) \approx 3.882
$$

Actual value: $y(0.5)=3.8273 \ldots$

Question: How would we make the approximation better?

$$
y^{\prime}=y(4-y) \quad y(0.5) \approx 3.882
$$

Actual value: $y(0.5)=3.8273 \ldots$

Question: How would we make the approximation better? Use a smaller step size!

Euler's Method

Setup: Suppose that we have any differential equation $y^{\prime}=f(y, t)$ and an initial point $\left(t_{0}, y_{0}\right)$.

Goal: We want to approximate the value of y at some future time, $t_{\text {final }}$.

Strategy:

- Choose a step size Δt. Divide the interval [$\left.t_{0}, t_{\text {final }}\right]$ into n equal pieces of some size Δt.
- Linear approximation: $\left(t_{0}, y_{0}\right) \rightsquigarrow\left(t_{1}, y_{1}\right)$
- Linear approximation: $\left(t_{1}, y_{1}\right) \rightsquigarrow\left(t_{2}, y_{2}\right)$
- End up with $\left(t_{n}, y_{n}\right)$.

The smaller Δt is, the better our final approximation will be!

Euler's Method

In more detail: let $\Delta t=\frac{t_{\text {final }}-t_{0}}{n}$. Let $t_{k}=t_{0}+k \Delta t$.

We have an initial point $\left(t_{0}, y_{0}\right)$. Iteratively define y_{k} by

$$
\begin{aligned}
& y_{1}=y_{0}+y_{0}^{\prime} \cdot\left(t_{1}-t_{0}\right)=y_{0}+y_{0}^{\prime} \cdot \Delta t \\
& y_{2}=y_{1}+y_{1}^{\prime} \cdot\left(t_{2}-t_{1}\right)=y_{1}+y_{1}^{\prime} \cdot \Delta t \\
& y_{3}=y_{2}+y_{2}^{\prime} \cdot\left(t_{3}-t_{2}\right)=y_{2}+y_{2}^{\prime} \cdot \Delta t
\end{aligned}
$$

Euler's Method

We are going to use Euler's method with $\Delta t=0.1$ to approximate $y(0.5)$, given the following

$$
y^{\prime}=y+2 e^{y+1} \quad y(0.3)=-1
$$

Question: How many steps will we have to take?

Question: Write down an expression for the final approximation.

Euler's Method

We are going to use Euler's method with $\Delta t=0.1$ to approximate $y(0.5)$, given the following

$$
y^{\prime}=y+2 e^{y+1} \quad y(0.3)=-1
$$

Question: How many steps will we have to take? Two.

Question: Write down an expression for the final approximation.

$$
\begin{gathered}
y_{0}=-1 \\
y_{1}=-1+\left(-1+2 e^{-1+1}\right)(0.1)=-0.9
\end{gathered}
$$

Euler's Method

We are going to use Euler's method with $\Delta t=0.1$ to approximate $y(0.5)$, given the following

$$
y^{\prime}=y+2 e^{y+1} \quad y(0.3)=-1
$$

Question: How many steps will we have to take? Two.

Question: Write down an expression for the final approximation.

$$
\begin{gathered}
y_{0}=-1 \\
y_{1}=-1+\left(-1+2 e^{-1+1}\right)(0.1)=-0.9 \\
y_{2}=-0.9+\left(-0.9+2 e^{-0.9+1}\right)(0.1)=-0.99+0.2 e^{0.1}
\end{gathered}
$$

Euler's Method

$$
y^{\prime}=0.1(y-4) \quad y(0)=6
$$

We want to approximate $y(2)$.
Question: Will Euler's method give us an overapproximation or an underapproximation?
(Hint: Draw a picture!)

Euler's Method

$$
y^{\prime}=0.1(y-4) \quad y(0)=6
$$

We want to approximate $y(2)$.
Question: Will Euler's method give us an overapproximation or an underapproximation? (Hint: Draw a picture!) Underapproximation. This is because the graph is concave up.

$$
y_{0}^{\prime \prime}=0.1 y_{0}^{\prime}=0.01\left(y_{0}-4\right)>0
$$

https:
//www.desmos.com/calculator/qryeddley6

Euler's Method

$$
y^{\prime}=0.1(y-4) \quad y(0)=6
$$

We want to approximate $y(2)$. However, we know the exact answer:

$$
\begin{gathered}
y(t)=4+C e^{0.1 t} \\
y(0)=6 \Longrightarrow C=2
\end{gathered}
$$

So $y(2)=4+2 e^{0.2}$.

Euler's Method

$$
y^{\prime}=0.1(y-4) \quad y(0)=6
$$

We want to approximate $y(2)$. However, we know the exact answer:

$$
\begin{gathered}
y(t)=4+C e^{0.1 t} \\
y(0)=6 \Longrightarrow C=2
\end{gathered}
$$

So $y(2)=4+2 e^{0.2}$.
Therefore, using Euler's method allows us to approximate $4+2 e^{0.2}$.

Euler's Method for Approximation

Question: Use a spreadsheet and Euler's method in order to approximate the number e^{3}. How good of an approximation can you get?

Question: Use a spreadsheet and Euler's method in order to approximate the number $\sqrt{53}$. How good of an approximation can you get?

